
1/9

Arduino UNO Car 1.0

V1.0.2019.07.31

2/9

Lesson 2 Barrier avoidance car

The point of this section is the magic of writing code. Not only can you

control it by repeatedly changing the sketch, but you can also let your car

know about self-protection

So, let's learn how to keep your car away from obstacles.

1. Learning:

1. To learn how to use ultrasonic modules

2.To know the principle of the car obstacle

3.To use this program to make barrier avoidance car a reality

II. Preparations:

Smart car

USB cable

Ultrasonic bracket kit with colorful LED

1. Upload program

The program uses library<servo.h>, So we need to install the library first .

Open the Arduino compiler software

3/9

Select Sketch -> Include Library -> Manage Libraries…

Waiting for the “Library” downloaded

4/9

Search the servo and install the latest version. The following figure shows

that the server library is installed.

Connect the Arduino nano controller board to your computer and open the code file
in the path:”\ Lesson 2 Ultrasonic obstacle avoidance mode \
Obstacle_Avoidance_Car \ Obstacle_Avoidance_Car.ino”.
Upload the program to the Arduino nano board.

5/9

#include <Servo.h> //servo library
Servo myservo; // create servo object to control servo

int Echo = A4;
int Trig = A5;
int sound = 15;
int left_LED = 16;
int Right_LED = 17;
#define ENB 5
#define IN1 7
#define IN2 8
#define IN3 9
#define IN4 11
#define ENA 6
#define carSpeed 150
int rightDistance = 0, leftDistance = 0, middleDistance = 0;

void forward(){
analogWrite(ENA, carSpeed);
analogWrite(ENB, carSpeed);
digitalWrite(IN1, LOW);
digitalWrite(IN2, HIGH);
digitalWrite(IN3, HIGH);
digitalWrite(IN4, LOW);
digitalWrite(left_LED,LOW);
digitalWrite(Right_LED,LOW);
Serial.println("Forward");

}

void back() {
analogWrite(ENA, carSpeed);
analogWrite(ENB, carSpeed);
digitalWrite(IN1, HIGH);
digitalWrite(IN2, LOW);
digitalWrite(IN3, LOW);
digitalWrite(IN4, HIGH);
Serial.println("Back");

}

void left() {
analogWrite(ENA, carSpeed);
analogWrite(ENB, carSpeed);
digitalWrite(IN1, HIGH);

6/9

digitalWrite(IN2, LOW);
digitalWrite(IN3, HIGH);
digitalWrite(IN4, LOW);
digitalWrite(left_LED,HIGH);

digitalWrite(Right_LED,LOW);
Serial.println("Left");

}

void right() {
analogWrite(ENA, carSpeed);
analogWrite(ENB, carSpeed);
digitalWrite(IN1, LOW);
digitalWrite(IN2, HIGH);
digitalWrite(IN3, LOW);
digitalWrite(IN4, HIGH);
digitalWrite(left_LED,LOW);
digitalWrite(Right_LED,HIGH);
Serial.println("Right");

}

void stop() {
digitalWrite(ENA, LOW);
digitalWrite(ENB, LOW);
Serial.println("Stop!");

}

//Ultrasonic distance measurement Sub function
int getDistance() {

digitalWrite(Trig, LOW);
delayMicroseconds(2);
digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);
return (int)pulseIn(Echo, HIGH) / 58;

}

/************BLINKSOUND****/
void blinks()
{
for(int i=0;i<5;i++)
{
digitalWrite(left_LED,HIGH);
digitalWrite(Right_LED,HIGH);

7/9

digitalWrite(sound,HIGH);
delay(100);
digitalWrite(left_LED,LOW);
digitalWrite(Right_LED,LOW);
digitalWrite(sound,LOW);
delay(100);

Serial.println("Blink!");
}
delay(150);

}

void setup() {
myservo.attach(3); // attach servo on pin 3 to servo object
Serial.begin(9600);
pinMode(Echo, INPUT);
pinMode(Trig, OUTPUT);
pinMode(IN1, OUTPUT);
pinMode(IN2, OUTPUT);
pinMode(IN3, OUTPUT);
pinMode(IN4, OUTPUT);
pinMode(ENA, OUTPUT);
pinMode(ENB, OUTPUT);
pinMode(left_LED,OUTPUT);
pinMode(Right_LED,OUTPUT);
pinMode(sound,OUTPUT);
stop();

}

void loop() {
myservo.write(90); //setservo position according to scaled value
delay(500);
middleDistance = getDistance();

if(middleDistance <= 30) {
stop();
delay(500);
myservo.write(10);
delay(1000);
rightDistance = getDistance();

delay(500);
myservo.write(90);

8/9

delay(1000);
myservo.write(180);
delay(1000);
leftDistance = getDistance();

delay(500);
myservo.write(90);
delay(1000);
if(rightDistance < leftDistance) {

left();
delay(360);

}
else if(rightDistance > leftDistance) {

right();
delay(360);

}
else if((rightDistance <= 30) || (leftDistance <= 30)) {

back();
blinks();

delay(180);
}
else {

forward();
}

}
else {

forward();
}

}

After uploading the program to the Arduino Nano control board, disconnect the cable, put the

car on it and turn on the power supply. You will see the car moving forward and the cloud

platform continuing to rotate, so that the car moving distance can measure sensor’s continuous

running. If there is an obstacle in front, the cloud platform will stop and the vehicle will change

direction and bypass the barrier. After bypassing the obstacle, the cloud platform will continue to

rotate and the car will continue to move forward.

9/9

FAQ about the servo motor.
The angle of each tooth on the micro servo is 15 degrees. If you install it in the middle and as 90
degrees, rotate 15 degrees to the left or right, that is to say, the actual degree of micro servo is 75
degrees or 105 degrees.
1. Why does the micro-servo rotate 15 degrees counter-clockwise every time the power is
turned on?
This is normal for SG90 micro servo, it won’t affect the normal use of the program. If you don't
use a program to control it, you can rotate it back to its normal state by hand and turn off the
wire connected to the micro-servo before turning on the power supply.
2. The micro servo is out of control and keeps rotating.
Using the "myservo.write (angle)" command micron servo angle range from 0 to 180. If out of
range, the micro servo will not be able to recognize the angle and will continue to rotate.

2、 Introduction of principle：

First of all, let’s learn about the SG90 Servo:

10/9

Classification: 180 steering gear
Normally the servo has 3 controlling line: power supply, ground and sign.

Definition of the servo pins: brown line——GND, red line——5V,

orange——signal.

How does servo work:
The signal modulation chip in the servo receives signals from the controller board
then
the servo will get the basic DC voltage. There is also a reference circuit inside the
servo
which will produce a standard voltage. These two voltages will compare to each
other and the difference will be output. Then the motor chip will receive the
difference and decide the rotational speed, direction and angel. When there is no
difference between the two voltages, the servo will stop.
How to control the servo:
To control the servo rotation, you need to make the time pulse to be about 20ms
and
the high level pulse width to be about 0.5ms~2.5ms, which is consistent with the
angle
limited of the servo.

The example program:

Open Arduino IDE and select “File->Examples->Servo->Sweep”

11/9

Next, let’s have a look at the ultrasonic sensor module.

12/9

Feature of the module: testing distance, high precision module.
Application of the products: robot obstacle avoidance、object testing distance、liquid
testing、public security、parking lot testing.
Main technical parameters
(1)：voltage used: DC---5V
(2)：static current: less than 2mA
(3)：level output: higher than 5V
(4)：level output: lower than 0
(5)：detection angle: not bigger than 15 degree
(6)：detecting distance: 2cm-450cm
(7)：high precision: up to 0.2cm
Method of connecting lines: VCC, trig (the end of controlling), echo (the end of
receiving), GND
How does the module work:
(1)Apply IO port of TRIG to trigger ranging, give high level signal, at least 10us one
time;
(2)The module sends 8 square waves of 40kz automatically, tests if there are signals
returned automatically;
(3)If there are signals received, the module will output a high level pulse through IO
port of ECHO, the duration time of high level pulse is the time between the wave
sending and receiving. So the module can know the distance according to the time.
Testing distance= (high level time* velocity of sound (340M/S))/2);
Actual operation:

The Timing diagram is shown below. You only need to supply a short10uS pulse to

the

trigger input to start the ranging, and then the module will send out an 8 cycle burst

of

ultrasound at 40 kHz and raise its echo. The Echo is a distance object that is pulse

width and the range in proportion .You can calculate the range through the time

interval between sending trigger signal and receiving echo signal. Formula: uS / 58 =

centimeters or uS / 148 =inch; or: the range = high level time * velocity (340M/S) / 2;

we

suggest to use over 60ms measurement cycle, in order to prevent trigger signal to

the

echo signal.

13/9

//Ultrasonic distance measurement Sub function
int getDistance() {
digitalWrite(Trig, LOW);
delayMicroseconds(2);
digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);
return (int)pulseIn(Echo, HIGH) / 58;
}

The ultrasonic sensor module will detect the distance between the car and the

obstacles again and again and sending the data to the controller board, then the car

will stop and rotate the servo to detect the left side and right side. After compared

the

distance from the different side, the car turn to the side which has longer distance

and

move forward. Then the ultrasonic sensor module detects the distance again.

Code preview:

if(rightDistance > leftDistance) {
right();
delay(360);
}
else if(rightDistance < leftDistance) {
left();
delay(360);
}
else if((rightDistance <= 20) || (leftDistance <= 20)) {

14/9

back();
delay(180);
}
else {
forward();
}
}
else {
forward();
}

	Lesson 2 Barrier avoidance car

