

OKYSTAR DIY Car Tutorial

V1.0.19.6.11

Preface

Our OKYSTAR Car is fully compatible with micro:bit Car. We will show you how to use OKYSTAR Car. You will learn several innovative projects through OKYSTAR Car, including the most common and useful electronic components. In this tutorial We will show you our powerful and interesting OKYSTAR Car.

To find out more, you can visit our website: http://okystar.com/

OKYSTAR DIY Car list

CCROBO

Content

Lesson 1 Car Assembly Guide	5
Lesson 2 Programming Environment	25
Lesson 3 Robot Trolley Exercise	30
Lesson 4 Car infrared inspection line	36
Lesson 5 Robot car line patrol fire extinguishing	44
Lesson 6 Robot trolley line patrol alarm and fire extinguishing	53
Lesson 7 Robot car avoids obstacles	64
Lesson 8 Robot Car following object movement	73
Lesson 9 Infrared Remote Control Robot Car	82
Lesson 10 Bluetooth remote control robot car	93

Lesson 1 Car Assembly Guide

In this lesson we are going to learn how to install our OKYSTAR DIY Car kit. **The first step:** after getting the chassis of the car, first remove the protective film, as shown in the following figure:

We removed the protective film from the chassis of the car as shown:

CCROBO

The front of our car chassis is as follows:

The second step: we remove the protective film from the motor fixing piece of the trolley, as shown in the following figure:

The third step: the small wheel will be mounted on the chassis of the cart using M3*30 screws and M3 nuts.

As shown below:

CCROBO

CCROBO

Five steps: Place the motor fixing piece of the trolley on the corresponding hole of the chassis of the car.

The specific operation is as follows::

We are going to use the M3 screw and the M3 nut to fix the universal wheel to the corresponding position on the chassis of the car, as shown:

Small dots protruding from the black circle should be installed outwards

Connect the left and right motor cables to the motor ports on the left and right sides of the Robot micro:bit V3.0 (extension board), as shown in the figure:

The sixth step: install the fire extinguisher fixture, the specific installation is as follows:

Installation of fire extinguishing device (small fan)

Install the fire extinguisher (small fan) on the chassis of the cart as shown:

CCROBO

Connect the fire extinguisher (small fan) cable to the "B-" and "B+" ports of Robot micro: bit V3.0 (extension board)

The seventh step: install two infrared tracking modules under the chassis of the car; as shown in the following figure:

First fix the M3*25 through-hole copper column on the module, as shown in the figure:

Install the fixed module under the chassis of the car, as shown in the figure:

Next, connect the left and right modules to the Robot micro:bit V3.0 (extension board) port. The specific connections are as follows:

Connect the left infrared tracking sensor module "OUT" to the "P1" port of Robot micro: bit V3.0 (extension board)

CCROBOT

Left module

Right module

CCROBO

The eighth step: the flame sensor module is installed above the chassis of the car; as shown in the following figure:

(Firstly fixed on the chassis of the car with M3*10 through-hole copper column)

CCROBO

Next, we will connect the flame sensor module to the Robot micro: bit V3.0 (extension board) port, as shown in the following figure:

Connect the flame sensor module "DO" to the "P12" port of the Robot micro: bit V3.0 (extension board)

The ninth step: installing two obstacle avoidance sensor modules above the chassis of the car; as shown in the following figure:

First fix the M3*10 through-hole copper column on the module, as shown in the figure:

CCROBO

Install the fixed module above the chassis of the car, as shown in the figure:

Next, connect the left and right infrared obstacle avoidance modules to the Robot micro:bit V3.0 (extension board) port. The specific connection is as follows: Connect the left infrared obstacle avoidance sensor module "OUT" to the "P14" and "P15" ports of Robot micro: bit V3.0 (extension board).

CCROBO

left module

VCC--VCC GND--GND OUT--P14

Right module

VCC--VCC GND--GND OUT-- P15

Step 10: Install the micro:bit main control board, now our OKYSTAR DIY Car has been installed.

as the picture shows:

Lesson 2 Programming Environment

1.Online programming mode

(1) Connect micro:bit to computer via micro USB cable. Mac, PC, Chrome book and Linux systems(including Raspberry Pi) are all supported. At this point, the computer will have an extra disk letter called micro:bit on your computer, and micro:bit will appear as a "MICROBIT" driver. Please note that this is not an ordinary U disk! Open the disk letter and input this web address directly in the browser: http://microbit.org/

(2) Successfully access to the web address, as shown in Figure 1-1, we can click English on the upper right to switch the language.

Figure 1-1

CCROBO

Click Let's Code

MakeCode Editor

The MakeCode editor provided by Microsoft makes it easy to program your micro:bit with blocks and JavaScript. Find out more about the latest features in MakeCode.

If you have any issues accessing the editor, check that it isn't blocked in your school.

Click My Project

🗂 micro:bit	A Home	Microsoft
	cr shake 'v	
My Projects		1 Import
Ð	piano {	distance (
New Project	3 hours ago	4 hours ago

After successfully entered, You can program it in the 1-4 interface below.

🗩 micro:bit 🔏 Home <	Blocks	{} JavaScript	3	•	Microsoft
	Search Q Basic Input	on start	forever		
	Music				
0 1 2 3V OND	I Radio				
	C Logic				
	Math				
	✓ Advanced				
I description of the second	Untitled			5	0 0
	Figu	re 1-4			
					27/95

CCROBOT

Download apps: Click the "Download" key in the editor. This will download a 'hex' file, which is a compact program format that your micro:bit can be read. After you download the hex file, copy it to micro: bit like copying the file to a USB driver. On Windows, you can right-click and select the "Send to "MICROBIT". When you see the lights flickering on the microbit motherboard, you're downloading the program. After flickering, it means that the program was downloaded successfully.

Figure 1-5

The Mac system drags' hex' into MICROBIT

	Downloads				
		Q St	Q Search		
Favorites	Name	Size	Kind		
All My Files	microbit-my-first-code.hex	578 KB	Document		
C iCloud Drive					
Applications					
Desktop					
Documents					
O Downloads					
Devices					
Remote Disc					
	A				
	Figure 1-6				

This page shows you how to start using micro:bit, but in addition to Make Code, you can also use Python and text-based JavaScript to write micro:bit

Note:

Some of the expansion packages we need to add during online programming, for For example: when we use OKYSTAR Car for experiments, we have to add their extension package github.com/zhuning239/makerobot

devices

required.

servo A micro-s

Lesson 3 Robot Trolley Exercise

Overview:

In this lesson, we will learn how to drive OKYSTAR DIY Car to work properly.

Component Required:

- USB data cable * 1
- OKYSTAR DIY Car Robot * 1

DC 3V-6V DC 1:120 Gear Motor TT Motor :

Voltage range: 3-6 Speed: 20-200RPM Dimensions: 22.5 * 64.5mm, only 64.5mm long mini motor Suitable for small diameter, low noise and high torque applications Motor default direction: CCW

Code:

Then connect the micro:bit to the computer via USB, click the computer icon in the computer, click the URL in the micro: location disk to enter the programming interface, and then click Add Package. Copy github.com/zhuning239/makerobot to the input field, click OK to add the package, and then you can build the block using our extension package.

CCROBO

CCROBO

CCROBO

CCROBO

Complete code:

Lesson 4 Car infrared inspection line

Overview:

In this lesson, we will learn about the OKYSTAR DIY Car infrared inspection line function.

Component Required:

- USB data cable * 1
- OKYSTAR DIY Car Robot * 1

Infrared tracking sensor module:

Use infrared reflective sensor TCRT5000

- Operating voltage 2.5V - 12V (Note: Using low supply voltage, high supply voltage,

shorter sensor life, 5 volt power supply is the preferred power supply)

- Operating current 18-30mA, best performance
- Known objects, the final output signal level is low; no object is detected, the final output signal is higher

- TTL level sensor output can be directly connected to the microcontroller IO port 3.3 volts or 5 volts

CCROBO

Note: When using the infrared tracking sensor module, you need to use a screwdriver to rotate the potentiometer in the module to operate normally.

Code:

Then connect the micro:bit to the computer via USB, click the computer icon in the computer, click the URL in the micro: location disk to enter the programming interface, and then click Add Package. Copy github.com/zhuning239/makerobot to the input field, click OK to add the package, and then you can build the block using our extension package.

CCROBO

CCROBOT

			-					
function Tleft	natelon Tright	function Sto	P	function Forward	function Back	and	function Left	Tunction Right
Rotor	Notor	Potor		Rotor .	Kotor		Flotor	Percer
AUA -	MIA -	T ALM		PIA -			PILA V	MAX
speed -100	speed 100	speed 0		speed 100	speed -100	1	speed 0	speed 98
H2A =	HZA 🗢	H2A -		RZA -	PIZA 🕶		PZA 🔻	R2A +
speed 100	speed -100	 speed 0	<u> </u>	speed 100	speed -100	÷.	speed 90	speed 0
			_					
							39,	/95

CCROBO

CCROBO

TOYS4BRAIN.COM.UA

CCROBO

CCROBOT

Complete code:

Lesson 5 Robot car line patrol fire extinguishing

Overview:

In this lesson, let's learn robot car line patrol fire extinguishing.

Component Required:

- USB data cable * 1
- OKYSTAR DIY Car Robot * 1

Infrared tracking sensor module:

Use infrared reflective sensor TCRT5000

- Operating voltage 2.5V - 12V (Note: Using low supply voltage, high supply voltage,

shorter sensor life, 5 volt power supply is the preferred power supply)

- Operating current 18-30mA, best performance
- Known objects, the final output signal level is low; no object is detected, the final output signal is higher

- TTL level sensor output can be directly connected to the microcontroller IO port 3.3 volts or 5 volts

Note: When using the infrared tracking sensor module, you need to use a screwdriver to rotate the potentiometer in the module to operate normally.

Flame sensor module:

Usage:

These types of sensors are used for short range fire detection and can be used to monitor projects or as a safety precaution to cut devices off / on.

Range:

I have found this unit is mostly accurate up to about 3 feet.

How it works:

The flame sensor is very sensitive to IR wavelength at 760 nm ~ 1100 nm light.

Analog output (A0): Real-time output voltage signal on the thermal resistance.

Digital output (D0): When the temperature reaches a certain threshold, the output high and low signal threshold adjustable via potentiometer.

Pins:

VCC..... Positive voltage input: 5v for analog 3.3v for Digital.

A0..... Analog output

D0..... Digital output

GND..... Ground

Code:

Then connect the micro:bit to the computer via USB, click the computer icon in the computer, click the URL in the micro: location disk to enter the programming interface, and then click Add Package. Copy github.com/zhuning239/makerobot to the input field, click OK to add the package, and then you can build the block using our extension package.

CCROBO

CCROBO

CCROBO

CCROBO

CCROBO

orever								
if	digi	tal read	l pin P		(0	th	en
	P0	P1	P2	P3				
else	P4	P5	P6	P7			(Э
•	P8	P 9	P10	P11				
	P12	P13	P14	P15				
	P16	P19	P20					

CCROBO

Complete code:

Lesson 6 Robot trolley line patrol alarm and fire extinguishing

Overview:

In this lesson we will learn robot trolley line patrol alarm and fire extinguishing.

Component Required:

- USB data cable * 1
- OKYSTAR DIY Car Robot * 1

Infrared tracking sensor module:

Use infrared reflective sensor TCRT5000

- Operating voltage 2.5V - 12V (Note: Using low supply voltage, high supply voltage,

shorter sensor life, 5 volt power supply is the preferred power supply)

- Operating current 18-30mA, best performance
- Known objects, the final output signal level is low; no object is detected, the final output signal is higher

- TTL level sensor output can be directly connected to the microcontroller IO port 3.3 volts or 5 volts

CCROBO

Note: When using the infrared tracking sensor module, you need to use a screwdriver to rotate the potentiometer in the module to operate normally.

Flame sensor module:

Usage:

These types of sensors are used for short range fire detection and can be used to monitor projects or as a safety precaution to cut devices off / on.

Range:

I have found this unit is mostly accurate up to about 3 feet.

How it works:

The flame sensor is very sensitive to IR wavelength at 760 nm ~ 1100 nm light.

Analog output (A0): Real-time output voltage signal on the thermal resistance.

Digital output (D0): When the temperature reaches a certain threshold, the output high and low signal threshold adjustable via potentiometer.

Pins:

VCC..... Positive voltage input: 5v for analog 3.3v for Digital.

A0..... Analog output

D0..... Digital output

GND..... Ground

CCROBO

Buzzers are typically used for identification and alarm purposes across many major industries. The major application categories that utilize buzzers for indication or alert purposes include: home appliances, automotive electronics, medical, safety and security, industrial, and office automation.

Code:

Then connect the micro:bit to the computer via USB, click the computer icon in the computer, click the URL in the micro: location disk to enter the programming interface, and then click Add Package. Copy github.com/zhuning239/makerobot to the input field, click OK to add the package, and then you can build the block using our extension package.

CCROBO

CCROBO

CCROBO

CCROBO

CCROBO

TOYS4BRAIN.COM.UA

Complete code:

CCROBO

Lesson 7 Robot car avoids obstacles

Overview:

In this lesson we will learn about robot car avoids obstacles.

Component Required:

- USB data cable * 1
- OKYSTAR DIY Car Robot * 1

Infrared obstacle avoidance sensor module:

This is yet another one of those modules with cool possibilities. You could for example, sound an alarm when something got too close or you could change the direction of a robot or vehicle.

The device consists of an Infrared Transmitter, an Infrared Detector, and support circuitry. It only requires three connections. When it detects an obstacle within range it will send an output low.

Code:

Then connect the micro:bit to the computer via USB, click the computer icon in the computer, click the URL in the micro: location disk to enter the programming interface, and then click Add Package. Copy github.com/zhuning239/makerobot to the input field, click OK to add the package, and then you can build the block using our extension package.

CCROBO

🛞 Makerobot	call function _Backward =					
New function na	me:		Right			
Forward			Left			
29	Ok 🗸	Cancel x				
Pins Serial	call function Tleft		2			

funct	ion	Forwa	ard		funct	ion Ri	ght	fu	nctio	n Tr	ight		
functi	on	Backw	ard		func	tion L	eft	+	funct	ion	Tleft		
Z										9	е Э	1	
				functio	on Stop								

CCROBO

CCROBO

CCROBO

CCROBO

if	(digital read pin P(▼) = ▼ 0 then							
	PO	P1	P2	P3			5	
else	P4	P5	P6	P7		(Э	
•	P8	P9	P10	P11				
	P12	P13	P14	P15				
	P16	P19	P20					

CCROBO

Complete code:

Lesson 8 Robot Car following object movement

Overview:

In this lesson we will learn about robot car following object movement.

Component Required:

- USB data cable * 1
- OKYSTAR DIY Car Robot * 1

Infrared obstacle avoidance sensor module:

This is yet another one of those modules with cool possibilities. You could for example, sound an alarm when something got too close or you could change the direction of a robot or vehicle.

The device consists of an Infrared Transmitter, an Infrared Detector, and support circuitry. It only requires three connections. When it detects an obstacle within range it will send an output low.

Code:

Then connect the micro:bit to the computer via USB, click the computer icon in the computer, click the URL in the micro: location disk to enter the programming interface, and then click Add Package. Copy github.com/zhuning239/makerobot to the input field, click OK to add the package, and then you can build the block using our extension package.

CCROBO

function	Forwa	ard		function	Right	fu	Inctio	n Tr	ight	
function	Backw	ard		function	Left	+	funct	ion	Tleft	
					-					
				3 3						
		fur	nction	Stop						
									75	5/95

CCROBO

function Tleft	function Tright	function Stop	function Forward	function Backward	function Left	function Right
Peter	Plotor	Rotor	Rotor	Notor	Rotor	Peter
MIA 🖛	HIA -	PIA 🖛	HIA +	RIA -	HIA 🕶	PDA -
speed -100	speed 100	speed 0	speed 100	speed -100	speed 0	speed 98
H2A -	H2A -	H2A -	HZA -	M2A -	NZA 🗢	R2A -
speed 100	speed -100	speed 0	speed 100	speed -100	speed 90	speed 0
RZA - speed 100	RZA - speed -100	FIZA - speed 0	FZA - speed 189	RZA - speed -100	PZA T	RZA - speed

CCROBO

CCROBO

CCROBO

CCROBO

	digi	tal read	l pin P	•	- 0	the	n	
	PO	P1	P2	P3				
se	P4	P5	P6	P7		Э	20	
	P8	P9	P10	P11				
	P12	P13	P14	P15				

Complete code:

CCROBOT

if digital read	lpin P14	•	- 0	and 💌	digital read pi	n P15 🔻 🔤	- 0	then
call function Forw	ard 💌						1961 - 1 94	
else if digital	read pin	P14 -		1 and 👻	digital read	l pin 🛛 P15 👻	0	then Θ
call function Righ	t 🕶							
else if digital	read pin	P14 -		0 and •	digital read	l pin P15 👻	=• 1	then Θ
call function Left							10 A A	
call function Left else	-							Θ

Lesson 9 Infrared Remote Control Robot Car

Overview:

In this lesson we will learn about the Infrared Remote Control Robot Car.

Component Required:

- USB data cable * 1
- OKYSTAR DIY Car Robot * 1

Infrared receiver module:

- Very low supply current
- Photo detector and preamplifier in one package
- Internal filter for PCM frequency
- Supply voltage: 2.5 V to 5.5 V
- Improved immunity against ambient light
- Insensitive to supply voltage ripple and noise

CCROBO

Remote control:

Electronic Device

In electronics, a remote control is an electronic device used to operate the device from a distance, usually wirelessly. For example, in consumer electronics, a remote control can be used to operate devices such as a television set, DVD player or other home appliance, from a short distance. A remote control is primarily a convenience feature for the user, and can allow operation of devices that are out of convenient reach for direct operation of controls. In some cases, remote controls allow a person to operate a device that they otherwise would not be able to reach, as when a garage door opener is triggered from outside or when a Digital Light Processing projector that is mounted on a high ceiling is controlled by a person from the floor level.

Code:

Then connect the micro:bit to the computer via USB, click the computer icon in the computer, click the URL in the micro: location disk to enter the programming interface, and then click Add Package. Copy github.com/zhuning239/makerobot to the input field, click OK to add the package, and then you can build the block using our extension package.

New function nar	me:	2.	Right
Forward			Left
	ok 🗸	Cancel >	
Pins Serial	call function T	teft er Stop	

CCROBO

CCROBO

CCROBO

CCROBOT

CCROBOT

Complete code:

function Right function Tright function	orward Function Backward	function Tleft	function Stop	function Left	on start	a second
Potor - Potor - Potor	Rotor	Rotor	Notor	Motor	connect ir receiver to	P8 +
RIA - K RIA - RIA -	HIA 🕶 🔹 🖓	PEA +	MIA -	RIA -		
speed 80 speed 80 speed 10	8 speed -100	speed -80	speed 0	speed 0		
HZA - HZA - HZA -	n	RZA =	MZA 💌	RZA-+		
speed 0 speed 10	0 speed -100	speed 80	speed 0	speed 80		
on NUMB + button pressed on CH + button pressed	on PLAY - button pressed	on NEXT = button	pressed on PREV	· button pressed	on Add v button pressed	
show icon 🗰 🔹 call function Forward	<pre>call function Right *</pre>	call function St	top • call f	unction Left •	call function Backward -	a oo a a
						a ne z a
on NUM1 * button pressed on NUM2 * button press	en NUP3 • button pressed	on NUM - button	pressed on NUM	5 • button pressed	on NUM6 v button pressed	
show icon	show icon 🖤 💌	show icon	show a	icon 👔 🔹	show icon 👘 🔹	
on NUM7 * button pressed on NUM8 * button press	d on NUR9 * button pressed					
show icon	show leds					

CCROBO

on CH_MINUS button pressed	on EQ • button pressed
Motor Stop M1B -	if digital read pin P13 ▼ = ▼ 0 then
Notor M1B - speed 255	play tone Middle E for 1 ▼ beat
pause (ms) 1000 🔻	play tone Middle E for 1 - beat
Motor M1B - speed 0	play tone Middle F for 1 + beat
	play tone Middle G for 1 - beat
	play tone Middle G for 1 - beat
	play tone Middle F for 1 + beat
	play tone Middle E for 1 - beat
	play tone Middle D for 1 + beat
	play tone Middle C for 1 - beat
	play tone Middle C for 1 • beat
	play tone Middle D for 1 - beat
	play tone Middle E for 1 • beat
	play tone Middle E for 1 ♥ beat
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	play tone (Middle D) for 1/2 wheat
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	play tone Middle D for 2 - beat
	play tone Middle E for 1 - beat
	play tone Middle E for 1 • beat
	play tone Middle F for 1 • beat
	play tone Middle G for 1 - beat
	play tone Middle G for 1 V beat
	play tone Middle F for 1 • beat
	play tone Middle E for 1 • beat
	alar term Middle D. for 1 = heat
1 A A A	play tone mitude by for i o beat
	play tone Middle C for 1 v beat
	play tone Middle C for 1 • beat
	play tone Middle D for 1 - heat
1. Sec. 1. Sec. 1.	Projectione of the I'v Beat
1 8 K	play tone Middle E for 1 ▼ beat
	play tone Middle D for 1 • beat
	play tone Middle C for 1/2 - beat

CCROBO

play tone	Middle D for	r 1 • beat
play tone	Middle D for	n 1 🔹 beat
play tone	Middle E for	1 • beat
play tone	Middle C for	r 1 • beat
play tone	Middle D for	r 1 ▼ beat
play tone	Middle E for	1/2 ▼ beat
play tone	Middle F for	r 1/2 ▼ beat
play tone	Middle E for	1 • beat
play tone	Middle C for	n 1 ▼ beat
play tone	Middle D for	r 1 ▼ beat
play tone	Middle E for	r 1/2 • beat
play tone	Middle F for	1/2 • beat

play tone	Middle E for 1 - beat
play tone	Middle D for 1 • beat
play tone	Middle C for 1/2 - beat
play tone	Middle D for 1/2 • beat
play tone	Low G for 1 • beat
play tone	Middle E for 1/2 • beat
play tone	Middle E for 1/2 • beat
play tone	Middle E for 1 • beat
play tone	Middle F for 1 - beat
play tone	Middle G for 1 ▼ beat
play tone	Middle G for 1 - beat
play tone	Middle F for 1 ▼ beat
play tone	Middle E for 1/8 ▼ beat
play tone	Middle F for 1/8 - beat

CCROBOT

ay tone Middle C for 1 * beat ay tone Middle C for 1 * beat ay tone Middle D for 1 * beat ay tone Middle E for 1 * beat ay tone Middle D for 1 * beat ay tone Middle C for 1/2 * beat ay tone Middle C for 2 * beat
ay tone Middle C for 1 • beat ay tone Middle C for 1 • beat ay tone Middle D for 1 • beat ay tone Middle E for 1 • beat ay tone Middle D for 1 • beat ay tone Middle C for 1 • beat
ay tone Middle C for 1 • beat ay tone Middle C for 1 • beat ay tone Middle D for 1 • beat ay tone Middle E for 1 • beat ay tone Middle D for 1 • beat
ay tone Middle C for 1 * beat ay tone Middle C for 1 * beat ay tone Middle D for 1 * beat ay tone Middle E for 1 * beat
ay tone Middle C for 1 • beat ay tone Middle C for 1 • beat ay tone Middle D for 1 • beat
ay tone Middle C for 1 • beat ay tone Middle C for 1 • beat
ay tone Middle C for 1 - beat
ay tone Middle D for 1/2 • beat

Physical picture:

Lesson 10 Bluetooth remote control robot car

Overview:

In this lesson we will learn about Bluetooth remote control robot car.

Component Required:

- USB data cable * 1
- OKYSTAR DIY Car Robot * 1

Robot micro:bit V3.0 (extension board):

CCROBO

- 1, lithium battery holder
- 2, four-way full color programmable RGB
- 3, anti-reverse battery activation button
- 4, micro: bit 8 way IO port
- 5, 8 way servo interface
- 6, programmable passive buzzer
- 7, DC motor / stepper motor interface
- 8, DC motor / stepper motor interface
- 9, the robot left motor interface
- 10, 5V external power supply interface
- 11, the power switch
- 12, micro USB charging interface
- 13, charging circuit
- 14, the robot right motor interface
- 15, micro:bit gold finger interface
- 16, IR infrared remote control receiver
- 17, I2C interface
- 18, power indicator
- 19, the left infrared obstacle avoidance interface
- 20, infrared tracking module interface
- 21, fire extinguishing sensor interface
- 22, ultrasonic module interface
- 23, the right infrared obstacle avoidance interface

Complete code:

Due to the revision of the online web programming of microbit's official website, our Bluetooth remote control program cannot be directly imported into the microbit disk from the online program, otherwise it will not be able to connect to the Bluetooth, and will also flash back even the Bluetooth is connected

Solution:

1.Download the program from our network drive and drag it to the microbit drive symbol directly. (note: our program cannot be imported into online programming, otherwise the Bluetooth module cannot be used)

Note:

About App We only provide the Android version here. For other versions, you can also search for related apps on other related websites to control our Bluetooth car.

