SSA3000X Series Spectrum Analyzer

DataSheet-2015.11

SIGLENT TECHNOLOGIES CO.,LTD

SSA3032X

SSA3021X

General Description

Siglent's SSA3000X series of spectrum analyzers have a frequency range of 9 KHz to 2.1 GHz / 3.2 GHz. With their light weight, small size, and friendly user interface, the SSA3000s offer a bright easy to read display, powerful and reliable automatic measurements, and plenty of powerful features. Applications are many, but include research and development, education, production, maintenance, and many more.

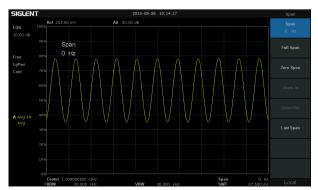
Features and Benefits

- All-Digital IF Technology
- Frequency Range from 9 kHz up to 3.2 GHz
- -161 dBm/Hz Displayed Average Noise Level (Typ.)
- -98 dBc/Hz @10 kHz Offset Phase Noise (1 GHz, Typ.)
- ♣ Total Amplitude Accuracy < 0.7 dB</p>
- 10 Hz Minimum Resolution Bandwidth (RBW)
- 🜆 Standard Preamplifier
- Up to 3.2 GHz Tracking Generator Kit (Opt.)
- Reflection Measurement Kit (Opt.)
- Advanced Measurement Kit (Opt.)
- EMI Pre-compliance Measurements Kit (Opt.)
- 10.1 Inch WVGA (1024x600) Display

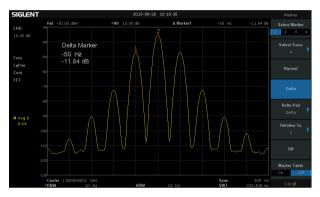
Model and Main index

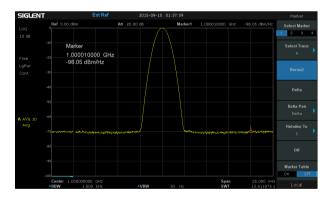

Model	SSA3032X	SSA3021X
Frequency Range	9 kHz~3.2 GHz	9 kHz~2.1 GHz
Resolution Bandwidth	10 Hz~1 MHz, in 1-3-10 sequence	10 Hz~1 MHz, in 1-3-10 sequence
Displayed Average Noise Level	-161 dBm/Hz, Normalize to 1 Hz (typ.)	-161 dBm/Hz, Normalize to 1 Hz (typ.)
Phase Noise	<-98 dBc/Hz@1 GHz, 10 kHz offset	<-98 dBc/Hz@1 GHz, 10 kHz offset
Amplitude Precision	< 0.7 dB	< 0.7 dB

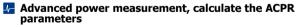
Design features


Support four traces and cursors independently

IGLENT				2015-08	26 03:30:00				
	Ref 19.00		*A	tt 51.00 dB				Select Mark	er
16 .					1			1 2 3	4
					亦				
	1 Ma	arker							
	0.0	991112	MHz						
		33 dBm							
	n 0.,								
	Peleakonste	Nothing	WORK HANNES	and When the	NO ANAMAN	wassers in der Berkeler und	erusditetatore		
	Adaptati	门物的原则	elle part	Paulan 177	The second second second second second	Should be a state of the state	F-Bringer ally		
				- Walter - 10 -					
								Delta	
	◆RB₩			♦VBW		SWT			
ew	Marker	Table							
		10.010						Relative To	
	Marker	Tra	ICB	Readout	X Axis	Ampt			
				Frequency	-160.000 KHz	45.39 dB			
						-39.06 dBm		Off	
								Marker Tabl	
								On O	

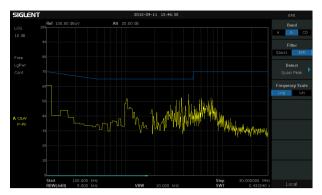

-151 dBm Displayed Average Noise Level (RBW=10 Hz)


Demodulation at the zero span




I0 Hz Minimum Resolution Bandwidth (RBW)

Phase noise -98 dBc/Hz@1 GHz, offset 10 kHz



Design features

Reflection measurement, acquire characteristic curve of the Return Loss

EMI filter, Quasi-Peak detector with limit template following CISPR 16

Specifications

Specification are valid under the following conditions: the instrument is within the calibration period, is stored for at least two hours at 0 $^{\circ}$ C to 50 $^{\circ}$ C temperature, and is warmed up 40 minutes. In addition tracking generator indicators, the specifications in this manual include the measurement uncertainty.

Technical index: All products guaranteed performance parameters, Apply to 5 $^\circ\!\!\mathbb{C}$ to 45 $^\circ\!\!\mathbb{C}$ temperature range.

Typical: 80 percent of the measurement result will meet at room temperate (approximately 25 °C). It has 95th percentile reliability. This date is not warranted and does not include the measurement uncertainly.

Nominal: The expected mean or average performance or a designed attribute such as the 50 Ω connecter. This date is not warranted and does not include the measurement uncertainly. This measurement meet at room temperate (approximately 25 $^{\circ}$ C).

Frequency Characteristic			
	SSA3032X	SSA3021X	
Frequency			
Frequency range	9 kHz-3.2 GHz	9 kHz-2.1 GHz	
Frequency resolution	1 Hz	1 Hz	
Frequency Span			
Range	0 Hz, 100 Hz to 3.2 GHz	0 Hz, 100 Hz to 2.1 GHz	
Accuracy	± Span / (number of sweep points - 1)		
Internal Reference Source	2		
Reference frequency	10.000000 MHz		
frequency reference accuracy	± [(time since last adjustment × frequency aging rate) + temperature stability + calibration accuracy]		
Initial calibration accuracy	<0.2 ppm		
Temperature stability	<1 ppm/year, 0 ℃ ~50 ℃		
Frequency aging rate	<0.5 ppm/first year, 3.0 ppm/20 years		
Marker			
Marker resolution	Span / (number of sweep points - 1)		
Marker uncertainty	\pm [frequency indication × frequency reference uncertainty + 1% × span + 10% × resolution bandwidth + marker resolution]		
Frequency counter resolution	1 Hz		
Frequency counter uncertainty	± [frequency indication × frequency reference accuracy + counter resolution]		
Bandwidths			
Resolution bandwidth (-3dB)	10 Hz~1 MHz, in 1-3-10 sequence		
Resolution filter shape factor	< 4.8:1 (60 dB:3 dB), Gaussian-like		
RBW uncertainty	<5%		
Video bandwidth (-3dB)	1 Hz ~3 MHz, in 1-3-10 sequence		
VBW uncertainty	<5%		

Amplitude Characterist	ic		
Amplitude and Level			
Measurement range	DANL to +10 dBm, 100 kHz~1 MHz, prear DANL to +20 dBm, 1 MHz~3.2 GHz, prear	•	
Reference level	-100 dBm to +30 dBm, 1 dB steps		
Preamplifier	20 dB (nom.), 9 kHz~3.2 GHz		
Input attenuation	0~51 dB, 1 dB steps		
Maximum input DC voltage	+/- 50 V _{DC}		
Maximum series RF power	33 dBm, 3 minutes, input attenuation >20) dB	
Displayed Average Noise L	evel (DANL)		
., .	20 $^{\circ}$ ~30 $^{\circ}$,attenuation = 0 dB, sample	detector, trace average >50	
		RBW=10 Hz	Normalization to 1Hz
	9 kHz~100 kHz	-100 dBm (nom.)	-110 dBm (nom.)
	100 kHz ~1 MHz	-97 dBm, -101 dBm (typ.)	-107 dBm,-111 dBm (typ.)
Preamp off	1 MHz~10 MHz	-122 dBm, -126 dBm (typ.)	-132 dBm,-136 dBm (typ.)
······	10 MHz~200 MHz	-127 dBm,-131 dBm (typ.)	-137 dBm,-141 dBm (typ.)
	200 MHz~2.1 GHz	-125 dBm, -129 dBm (typ.)	-135 dBm,-139 dBm (typ.)
	2.1 GHz~3.2 GHz	-116 dBm, -122 dBm (typ.)	-126 dBm,-132 dBm (typ.)
	9 kHz~100 kHz	-107 dBm (nom.)	-117 dBm (nom.)
	100 kHz ~1 MHz	-122 dBm, -127 dBm (typ.)	-132 dBm,-137 dBm (typ.)
	1 MHz~10 MHz	-138 dBm, -144 dBm (typ.)	-148 dBm,-154 dBm (typ.)
Preamp on	10 MHz~200 MHz		
	200 MHz~2.1 GHz	-146 dBm, -151 dBm (typ.)	-156 dBm,-161 dBm (typ.)
		-145 dBm, -148 dBm (typ.)	-155 dBm,-158 dBm (typ.)
	2.1 GHz~3.2 GHz	-135 dBm, -139 dBm (typ.)	-145 dBm,-149 dBm (typ.)
Phase Noise			
	20 ℃ ~30 ℃ ,fc=1 GHz		
Phase noise	<-95 dBc/Hz @10 kHz offset, <-98 dBc/Hz (typ.) <-96 dBc/Hz @100 kHz offset,<-97 dBc/Hz (typ.) <-115 dBc/Hz @1 MHz offset, <-117 dBc/Hz (typ.)		
Level Display			
Logarithmic level axis	10 dB to 100 dB		
Linear level axis	0 to reference level		
Units of level axis	dBm, dBmV, dBµV, V, W		
Number of display points	751		
Number of traces	4		
Trace detectors	Positive-peak, Negative-peak, Sample, No	rmal, Average (Voltage/RMS/Video) , Quasi	-peak (with EMI option)
Trace functions	Clear write, Max Hold, Min Hold, View, Bla	nk, Average	
Frequency Response			
	20 $^\circ C$ to 30 $^\circ C$, 30% to 70% relative hum	idity, attenuation = 20 dB, reference frequ	ency 50 MHz
Preamp off	±0.8 dB, ±0.4 dB, (typ.)	<i>n</i>	
Preamp on	±0.9 dB, ±0.5 dB, (typ.)		
Error and Accuracy			
Resolution bandwidth switching uncertainty	10 kHz RBW Logarithmic resolution ± 0.2 dB, liner resolution ± 0.01 , nominal		
Input attenuation switching uncertainty	20 °C to 30 °C , fc = 50 MHz, preamp off, Relative to 20 dB, 1 to 51 dB attenuation ± 0.5 dB		
		lz, VBW = 1 kHz, peak detector, attenuatio	n = 20 dB, 95th percentile reliability
Absolute amplitude accuracy	preamp off	±0.4 dB, input sign	
,,	preamp on	±0.5 dB, input sign	
Total amplitude accuracy			1 kHz, peak detector, attenuation = 20 dB,
	± 0.7 dB		
DE input VSWD	input attenuation 10 dB, 1 MHz~3.2 GHz		
RF input VSWR	<1.5,nom		

Amplitude Characteristic

Distortion and Spurious Responses		
Second harmonic distortion	fc≥50 MHz, mixer level -30dBm, attenuation = 0dB, preamp off, 20 $^\circ \!\! \mathbb C$ to 30 $^\circ \!\! \mathbb C$ -65 dBc	
Third-order intercept	fc≥50 MHz, two -20 dBm tones at input mixer spaced by 100 kHz, attenuation = 0 dB, preamp off, 20 $^\circ\!\!C$ to 30 $^\circ\!\!C$ +10dBm	
1dB Gain Compression	fc≥50 MHz, attenuation = 0 dB, preamp off, 20 $^\circ \!\! C$ to 30 $^\circ \!\! C$ >-5 dBm,nom.	
Residual response	input terminated = 50 Ω ,attenuation = 0 dB, 20 $^{\circ}$ C to 30 $^{\circ}$ C <-90 dBm,typ.	
Input related spurious	Mixer level = -30 dBm, 20 ℃ to 30 ℃ <-65 dBc	

Sweep and Trigger		
Sweep time	1 ms to 3000 s, Span \ge 100 Hz 1 µs to 3000 s, Span = 0 Hz, RBW \ge 100 kHz	
Sweep accuracy	Accuracy, Speed	
Sweep mode	Sweep, FFT	
Sweep rule	Single, Continuous	
Trigger source	Free, Video, External	
External trigger	5V TTL level, rising edge/falling edge	

Tracking Generator (Option)			
	SSA3032X	SSA3021X	
Frequency range	100 kHz~3.2 GHz	100 kHz~2.1 GHz	
Output level	-20 dBm~0 dBm		
Output level resolution	1 dB		
Output flatness	+/-3 dB		
Output maximum reverse level	Mean power:30 dBm,DC: $\pm 50 V_{\text{DC}}$		

EMI Receiver Measurement (Option)		
Resolution bandwidth (6dB)	200 Hz,9 kHz,120 kHz	
Detector	Quasi-peak	
Reflection Measurement (Option)		
Function	VSWR, Return Loss	
Advanced Measurement (Option)		
Function	Channel power, Adjacent channel power ratio, Time domain power, Occupied bandwidth	

External input and exte	rnal output	
Front panel RF input	50 Ω ,N-female	
Front panel TG output	50 Ω ,N-female	
10 MHz reference output	10 MHz, >0 dBm, 50 Ω , BNC-female	
10 MHz reference input	10 MHz, -5dBm~+10dBm, 50 Ω , BNC-female	
External Trigger input	1 k Ω , 5V TTL , BNC-female	
Communication Interfa	ce	
USB Host	USB-A 2.0 +	
USB Device	USB-B 2.0	
LAN	LAN (VXI11), 10/100 Base, RJ-45	
General Specification		
Display	TFT LCD, 1024×600(waveform area 751×501), 10.1 inch	
Storage	Internal (Flash) 256 MByte, External (USB storage device) 32 GByte	
Source	Input voltage range (AC) 100 V~240 V, AC frequency supply 45 Hz~440 Hz, Power consumption 30W	
Temperature	Working temperature 0 $^\circ \!\!\! \mathbb{C}$ to 50 $^\circ \!\!\! \mathbb{C}$, Storage temperature -20 $^\circ \!\!\! \mathbb{C}$ to 70 $^\circ \!\!\! \mathbb{C}$	
Humidity	0℃ to 30℃ ,≤95% Relative humidity; 30℃ to 50℃ , ≤75% Relative humidity	
Dimensions	393 mm×207 mm×116.5 mm (W×H×D)	
Weight	Contain tracking generator 4.60 kg (10.1 lb)	
Electromagnetic Compatibility and Safety		
EMC	EN 61326-1:2013	
Electrical safety	EN 61010-1:2010	

Ordering Information

Product Description	SSA3000X Spectrum Analyzer	Order Number
Product code	Spectrum Analyzer, 9 kHz~3.2 GHz	SSA3032X
	Spectrum Analyzer, 9 kHz~2.1 GHz	SSA3021X
Standard configurations	A Quick Start, A Product Certification, A Product Certification, A USB Cable, A CD (Including Quick Start, Data Sheet and Application Software) , A Calibration Certificate	QG-SSA3000X
	EMI measurement kit	EMI-SSA3000X
Options	Advanced measurement kit	AMK-SSA3000X
	Reflect measurement kit	Refl-SSA3000X
	Tracking Generator Kit	TG-SSA3000X
	Utility Kit: N (M) -SMA (M) cable N (M) -N (M) cable N (M) -BNC (F) adaptor (2 pcs) N (M) -SMA (F) adaptor (2 pcs) 10 dB attenuator	UKitSSA3X
	Refl-SSA3000X RB (1 MHz~2 GHz) N (M) -N (M) adaptor (2 pcs)	RBSSA3X20
Optional accessories	Near Field Probe: H field probe (4 pcs) N (M) -SMA (M) cable N (M) -BNC (F) probe	SRP5030
	N-SMA cable	N-SMA-6L
	N-N cable	N-N-6L
	N-BNC cable	N-BNC-6L
	Soft carrying bag	BAG-SCC

SSA3000X Series Spectrum Analyzer

About SIGLENT

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of test &measurement Instruments.

SIGLENT began to research and develop the Digital Oscilloscope independently in 2002. After a decade of development products have included digital oscilloscopes, isolated handheld oscilloscopes, function/arbitrary waveform generators, digital multimeters, DC power supplies, spectrum analyzers, and other general purpose test instrumentation. Since SIGLENTs first oscilloscope, the ADS 7000 series produced in 2005, SIGLENT has maintained the highest annual growth rate and has been the fastest developing DSO manufacturer over the past 10 years. Nowadays, SIGLENT Technologies is the leading manufacturer of oscilloscopes by shipments in China.

Headquarter:

SIGLENT TECHNOLOGIES CO., LTD. Add: Blog No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China. Tel: + 86 755 3661 5186 Fax: + 86 755 3359 1582 Email: sales@siglent.com; Website: http://www.siglent.com/ens/

USA:

SIGLENT Technologies America, Inc 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800 Toll Free: 877-515-5551 Fax: 440-399-1211 Email: info@siglent.com Website: www.siglentamerica.com

Europe:

SIGLENT TECHNOLOGIES EUROPE GmbH ADD: Liebigstrasse 2-20, Gebaeude 14, 22113 Hamburg Germany Tel: +49(0)-819-95946 Fax: +49(0)-819-95947 Email: info-eu@siglent.com Website: www.siglenteu.com Follow us on Facebook: SiglentTech

