Contents

Introduction ... 1
Inspection .. 1
Safety Notes ... 2
Usage Notes ... 6

Chapter 1 Overview .. 9
1.1 Product Overview ... 9
1.2 Features .. 9
1.3 Parts Names and Functions 10

Chapter 2 Measurement Procedures 15
2.1 Voltage Measurement ... 16
2.2 Frequency Measurement 18
2.3 Current Measurement ... 19
2.4 Resistance Measurement 22
2.5 Continuity Check ... 23
2.6 Diode Check ... 24

Chapter 3 Additional Functions 25
3.1 HOLD AUTO Function ... 25
3.2 HOLD Function .. 26
3.3 Overflow Warning Function 27
3.4 Relative Display Function 28
3.5 Auto Power Save Function 30
3.6 Voltage Detecting Function 31
3.7 Dynamic Recording Function 32
3.8 Memory Function .. 33
Chapter 4 Specifications

4.1 General Specifications ..35
4.2 Accuracy ..39

Chapter 5 Maintenance and Service

5.1 Replacing the Batteries and Fuses43
5.2 Cleaning ..45
5.3 Service ...45
Introduction

Thank you for purchasing the HIOKI "3256-50/51 DIGITAL HiTESTER". To obtain maximum performance from the product, please read this manual first, and keep it handy for future reference.

Inspection

- When you receive the product, inspect it carefully to ensure that no damage occurred during shipping. In particular, check the accessories, panel switches, and connectors. If damage is evident, or if it fails to operate according to the specifications, contact your dealer or Hioki representative.

- Before using the product the first time, verify that it operates normally to ensure that the no damage occurred during storage or shipping. If you find any damage, contact your dealer or Hioki representative.

- Before using the product, make sure that the insulation on the test leads is undamaged and that no bare conductors are improperly exposed. Using the product under such conditions could result in electrocution. Replace the test leads and probes with the specified Hioki Model 9207-10.
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3256-50*1</td>
<td></td>
</tr>
<tr>
<td>3256-51*2</td>
<td></td>
</tr>
<tr>
<td>9207-10 TEST LEAD</td>
<td>1</td>
</tr>
<tr>
<td>Instruction Manual</td>
<td>1</td>
</tr>
<tr>
<td>R03 Manganese battery</td>
<td>2</td>
</tr>
<tr>
<td>(Supplied with this product, for monitor)</td>
<td></td>
</tr>
<tr>
<td>9378 CARRYING CASE*1</td>
<td></td>
</tr>
<tr>
<td>(3256-50 only)</td>
<td></td>
</tr>
<tr>
<td>Protective holster*2</td>
<td></td>
</tr>
<tr>
<td>(3256-51 only)</td>
<td></td>
</tr>
</tbody>
</table>

Safety Notes

This manual contains information and warnings essential for safe operation of the product and for maintaining it in safe operating condition. Before using the product, be sure to carefully read the following safety notes.

⚠️ DANGER

This product is designed to conform to IEC 61010 Safety Standards, and has been thoroughly tested for safety prior to shipment. However, mishandling during use could result in injury or death, as well as damage to the product. Be certain that you understand the instructions and precautions in the manual before use. We disclaim any responsibility for accidents or injuries not resulting directly from product defects.
Safety Symbols

In the manual, the ⚠ symbol indicates particularly important information that the user should read before using the product.

⚠ The ⚠ symbol printed on the product indicates that the user should refer to a corresponding topic in the manual (marked with the ⚠ symbol) before using the relevant function.

⚠ Indicates that dangerous voltage may be present at this terminal.

□ Indicates a double-insulated device.

清扫 Indicates a grounding terminal.

= Indicates DC (Direct Current).

= Indicates AC (Alternating Current).

= Indicates DC (Direct Current) or AC (Alternating Current).
The following symbols in this manual indicate the relative importance of cautions and warnings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicates that incorrect operation presents an extreme hazard that could result in serious injury or death to the user.</td>
</tr>
<tr>
<td></td>
<td>Indicates that incorrect operation presents a significant hazard that could result in serious injury or death to the user.</td>
</tr>
<tr>
<td></td>
<td>Indicates that incorrect operation presents a possibility of injury to the user or damage to the product.</td>
</tr>
<tr>
<td></td>
<td>Advisory items related to performance or correct operation of the product.</td>
</tr>
</tbody>
</table>

Other Symbols

- ![Question Mark](image) Indicates the quick guide for operations
- ![Prohibited Action](image) Indicates the prohibited action
- ![Reference](image) Indicates the reference

Accuracy

We define measurement tolerances in terms of f.s. (full scale), rdg. (reading) and dgt. (digit) values, with the following meanings:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f.s. (maximum display value or scale length)</td>
<td>The maximum displayable value or the full length of the scale. This is usually the maximum value of the currently selected range.</td>
</tr>
<tr>
<td>rdg. (reading or displayed value)</td>
<td>The value currently being measured and indicated on the measuring product.</td>
</tr>
<tr>
<td>dgt. (resolution)</td>
<td>The smallest displayable unit on a digital measuring product, i.e., the input value that causes the digital display to show a "1".</td>
</tr>
</tbody>
</table>
Measurement categories (Overvoltage categories)

This product complies with CATIII (600 V), CATII (1000 V) safety requirements.
To ensure safe operation of measurement products, IEC 61010 establishes safety standards for various electrical environments, categorized as CAT I to CAT IV, and called measurement categories. These are defined as follows.

- CAT I: Secondary electrical circuits connected to an AC electrical outlet through a transformer or similar device.
- CAT II: Primary electrical circuits in equipment connected to an AC electrical outlet by a power cord (portable tools, household appliances, etc.)
- CAT III: Primary electrical circuits of heavy equipment (fixed installations) connected directly to the distribution panel, and feeders from the distribution panel to outlets.
- CAT IV: The circuit from the service drop to the service entrance, and to the power meter and primary overcurrent protection device (distribution panel).

Higher-numbered categories correspond to electrical environments with greater momentary energy. So a measurement device designed for CAT III environments can endure greater momentary energy than a device designed for CAT II. Using a measurement product in an environment designated with a higher-numbered category than that for which the product is rated could result in a severe accident, and must be carefully avoided.
Never use a CAT I measuring product in CAT II, III, or IV environments.
The measurement categories comply with the Overvoltage Categories of the IEC60664 Standards.
Follow these precautions to ensure safe operation and to obtain the full benefits of the various functions.

WARNING

- To avoid electric shock, do not allow the product to get wet, and do not use it when your hands are wet.
- Do not use the product where it may be exposed to corrosive or combustible gases. The product may be damaged or cause an explosion.
Observe the following to avoid damage to the product.

- **Installation and Operating Environment**
 Between 0°C and 40°C; 80% RH or less; indoors only. However, it can be safely operated at as low as -10°C.

- Do not store or use the product where it could be exposed to direct sunlight, high temperature or humidity, or condensation. Under such conditions, the product may be damaged and insulation may deteriorate so that it no longer meets specifications.

- This product is not designed to be entirely water- or dust-proof. To avoid damage, do not use it in a wet or dusty environment.

- Do not use the product near a device that generates a strong electromagnetic field or electrostatic charge, as these may cause erroneous measurements.

- To avoid damage to the product, protect it from vibration or shock during transport and handling, and be especially careful to avoid dropping.

- Adjustments and repairs should be made only by technically qualified personnel.

- If the protective functions of the product are damaged, either remove it from service or mark it clearly so that others do not use it inadvertently.

- To avoid corrosion from battery leakage, remove the batteries from the product if it is to be stored for a long time.
Accurate measurement may be impossible in the presence of strong magnetic fields, such as near transformers and high-current conductors, or in the presence of strong electromagnetic fields such as near radio transmitters.

To avoid battery depletion, turn the function selector OFF after use (the Auto Power Save feature consumes a small amount of current).

The indicator appears when battery voltage becomes low. Replace the batteries as soon as possible.
1.1 Product Overview

This measurement product is a multi-functional digital multimeter capable of measuring DC and AC voltages, DC and AC currents, and the resistance, checking the diode and continuity, and detecting voltage.

1.2 Features

- **Compliance with CE marking requirements**
 The measurement product is designed to comply with the international safety standard (IEC61010-1) and EMC standards.

- **Safety-designed handy digital multimeter**
 The measurement product is equipped with test-lead misinsertion preventive shutters and fast-acting fuses at the current measurement terminals.

- **Multi-functional and voltage detecting**
 - Live conductors can be examined safely and easily.
 - The Hold Auto function allows measured values to be maintained by simply disconnecting the test leads.
 - The Hold function maintains the displayed value.
 - The Memory function saves the held value displayed.
 - The Recording function displays the maximum, minimum, average, and currently measured values selectively.
 - The Relative function displays any discrepancy from the reference.
1.3 Parts Names and Functions

* for details, see the following pages

REC•MEMO
Button
(Press this button
change to the
function indicated
in blue.)
For other func-
tions, see the fol-
lowing pages.

V.Ω
Terminal used to
measure voltages
and resistances
(red test lead)

COM
Terminal common to
all functions
(black test lead)

A
Terminal used to
measure currents
in 10-A mode

μA.mA
Terminal used to
measure currents in
μA/μA mode

LCD display

H.AUTO/REL
Button

RANGE
Button

**Function
Selector**
(Selects functions
and turns the
power on/off)

NOTE

The terminal shutter works together with the function selector to prevent incorrect operation. Note that if the function selector is toggled with the test leads connected, the measurement product may be damaged.
1.3 Parts Names and Functions

LCD (Display)
- Indicates **HOLD AUTO/HOLD** function
- Indicates **Relative** function
- Indicates **Autoranging** function
- Indicates **DC voltage/current** function
- Indicates **AC voltage/current** function
- Indicates **low battery voltage**
- Lights up when the voltage drops below the battery accuracy guarantee voltage (2.2±0.1 V)

Bar-graph scale (42 dots)
- Bar graph (with polarity indicator)
- Decimal point

REC•MEMO
- Changes to the function indicated in blue
- Toggles between AC and DC modes (Current measurement)
- (page 19)
- Recording function (Displays MAX/MIN/AVG)*1
- (page 32)
- Voltage Detecting
- (page 31)
- Memory Function
- (page 33)
- Cancels the Auto Power Save function*2
- (page 30)

H.AUTO/REL
- **HOLD AUTO** function (Holds the measured value)
- (page 25)
- Turns the **HOLD** function on/off*2
- (page 26)
- Turns the **Relative** function (displaying the relative value) on/off*1
- (page 28)

RANGE
- Changes the manual range and selects range
- Changes the auto range from the manual range*1
- Changes the input level (Frequency function)
- (page 18)
- Calls data from memory*2
- (page 34)

*1: Press the button for at least 1 second (REC and REL require the button to be pressed for a longer time).
*2: Turn on the power while pressing the button, and hold the button down until a beeping sound is generated (power-on option).
1.3 Parts Names and Functions

Function Selector

- Press REC-MEMO when the function in parentheses is being used.
- (Diode Check function)
- Continuity function
- Resistance function
- DC voltage function (Voltage detecting)
- (Frequency function)
- AC voltage function

Quick Reference

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Operations</th>
<th>(page)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC voltage</td>
<td>~V</td>
<td>Measurement 16</td>
</tr>
<tr>
<td>DC voltage</td>
<td></td>
<td>Measurement 16</td>
</tr>
<tr>
<td>DC/AC Current (40 μA)</td>
<td>~40μA</td>
<td>Measurement 20</td>
</tr>
<tr>
<td>DC/AC Current (400/4000 μA)</td>
<td>~μA</td>
<td>Measurement 20</td>
</tr>
<tr>
<td>DC/AC Current (40/400 mA)</td>
<td>~mA</td>
<td>Measurement 21</td>
</tr>
<tr>
<td>DC/AC Current (10A)</td>
<td>~10A</td>
<td>Measurement 21</td>
</tr>
<tr>
<td>Resistance</td>
<td>Ω</td>
<td>Measurement 22</td>
</tr>
<tr>
<td>Continuity</td>
<td></td>
<td>Measurement 23</td>
</tr>
<tr>
<td>Diode</td>
<td></td>
<td>Measurement 24</td>
</tr>
</tbody>
</table>
1.3 Parts Names and Functions

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Voltage detecting</th>
</tr>
</thead>
<tbody>
<tr>
<td>~V Hz lights up</td>
<td>~V Hz lights up</td>
</tr>
<tr>
<td>REC-MEMO RANGE (1 - 4)</td>
<td>REC-MEMO x2 RANGE (1 - 4)</td>
</tr>
<tr>
<td>Measurement</td>
<td>Bring test leads close to the power line.</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>REC</td>
<td>REC</td>
</tr>
<tr>
<td>MEMO RANGE</td>
<td>MEMO RANGE</td>
</tr>
<tr>
<td>(1 - 4)</td>
<td>(1 - 4)</td>
</tr>
<tr>
<td>"Hz" lights up</td>
<td>"Hz" lights up</td>
</tr>
<tr>
<td>18</td>
<td>31</td>
</tr>
</tbody>
</table>

Quick Reference (application)

<table>
<thead>
<tr>
<th>Hold the measured value.</th>
<th>(HOLD AUTO function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This function is used when the displayed value cannot be checked during measurement (such as when necessary to measure the conductor in a dark place or using both hands.).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>~V/--- V/Ω/40μA/μA/1mA/10A</th>
<th>H.AUTO/REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>"HOLD" Blinking (Intermittent sound)</td>
<td></td>
</tr>
<tr>
<td>Move the test leads away from the measurement object.</td>
<td></td>
</tr>
<tr>
<td><1 second: Press the button for at least 1 second.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hold the measured value.</th>
<th>(HOLD function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"O.F" is displayed to provide a warning.</td>
<td></td>
</tr>
<tr>
<td>(Overflow Warning function)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>~V/--- V/Ω/40μA/μA/1mA/10A</th>
<th>H.AUTO/REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

| "O.F" is displayed when the measured value exceeds the maximum value. |

Use this function to check any discrepancy from the reference, or to control the resistance for the purpose of zero adjustment. (Relative function)

<table>
<thead>
<tr>
<th>~V/--- V/Ω/40μA/μA/1mA/10A</th>
<th>Display the reference.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.AUTO/REL</td>
<td></td>
</tr>
<tr>
<td>("REL" lights up)</td>
<td></td>
</tr>
<tr>
<td><1 second)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Cancellation: H.AUTO/REL (press again)
1.3 Parts Names and Functions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel the Auto-Power Save function.</td>
<td>(Auto-Power Save function)
 Press this button until a beeping sound is generated.</td>
</tr>
<tr>
<td>Enable the Power Save function:</td>
<td>Function change (“APS” lights up) After 10 minutes Power Save mode</td>
</tr>
<tr>
<td>Check the maximum, minimum, and average values during measurement.</td>
<td>(Recording function)
 (“MAX MIN AVG” lights up) After (MAX MIN AVG)
 MAX: maximum value / MIN: minimum value / AVG: average value / MAX MIN AVG: Current value Cancellation: REC-MEMO (press again)</td>
</tr>
<tr>
<td>Save the measured value to memory.</td>
<td>(Memory function)
 Hold the displayed value (“MEM.” lights up)</td>
</tr>
<tr>
<td>Call the saved data.</td>
<td>
 Memory-data display Select MEM#.</td>
</tr>
<tr>
<td>Delete all data from memory.</td>
<td>
 (<1 second)</td>
</tr>
</tbody>
</table>
Observe the following precautions to avoid electric shock.

- Always verify the appropriate setting of the function selector before connecting the test leads.
- Disconnect the test leads from the measurement object before switching the function selector.
- When it is necessary to replace the measurement terminal, remove the test lead from the measurement object and disconnect the lead from the terminal before toggling the function selector.

Even when the shutter is closed, the terminals are not sufficiently separated. To avoid electrocution, do not touch the terminals.

When the shutter is damaged, discontinue measurement and repair it.
2.1 Voltage Measurement

DANGER

- The maximum input voltage is 1000 VDC, 1000 Vrms, or 10^7 V•Hz. However, for CAT III circuits, the maximum voltage is 600 Vrms. Attempting to measure voltage in excess of the maximum input could destroy the product and result in personal injury or death.

- To avoid electrical shock, be careful to avoid shorting live lines with the test leads.

- For safety, test lead connections must always be made at the secondary side of a circuit breaker.

- The maximum rated voltage between input terminals and ground is 1000 V DC/AC (CAT II), 600 V DC/AC (CAT III), or 10^7 V•Hz. Attempting to measure voltages exceeding this limit with respect to ground could damage the product and result in personal injury.

AC Voltage Measurement

- Move the function selector to the $\sim V$ position for AC mode or to the $\equiv V$ position for DC mode (in either case, “V” lights up).

DC Voltage Measurement

- Connect the red test lead to terminal V. and the black test lead to terminal COM.
2.1 Voltage Measurement

3. Connect the test leads to the measurement object, and read the indicated value.

- **AC Voltage Measurement**
- **DC Voltage Measurement**

Selecting the manual range:
Reselecting the auto range:

- Holding the measured value:
 - HOLD AUTO Function, page 25) or
 - HOLD Function, page 26)

Appearance of O.F: The measured value exceeds 4200 counts (up to the 420-V range) or 1050 counts (1000-V range).

NOTE The indicated value may vary due to the existence of induced voltage under no-power conditions. However, this is not a problem.
2.2 Frequency Measurement

DANGER
- The maximum input voltage is 1000 VDC, 1000 Vrms, or 10^7V•Hz. However, for CATIII circuits, the maximum voltage is 600 Vrms. Attempting to measure voltage in excess of the maximum input could destroy the product and result in personal injury or death.
- For safety, test lead connections must always be made at the secondary side of a circuit breaker.

1. Move the function selector to the $\sim V$ position and press the **REC-MEMO** button ("Hz" lights up).
2. Connect the red test lead to terminal $V\Omega$, and the black test lead to terminal **COM**.
3. Select the input level (1 to 4) using the **RANGE** button, in accordance with the input voltage.
4. Connect the test leads to the measurement object, and read the indicated value.

<table>
<thead>
<tr>
<th>Input level</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8 to 4 V</td>
</tr>
<tr>
<td>2</td>
<td>4 to 40</td>
</tr>
<tr>
<td>3</td>
<td>40 to 400 V</td>
</tr>
<tr>
<td>4</td>
<td>400 to 1000 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input level</th>
<th>Input Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8 to 4 V</td>
</tr>
<tr>
<td>2</td>
<td>4 to 40</td>
</tr>
<tr>
<td>3</td>
<td>40 to 400 V</td>
</tr>
<tr>
<td>4</td>
<td>400 to 1000 V</td>
</tr>
</tbody>
</table>

Attenuation factor of the input voltage
($1/10^n$)
(n: Scale number)
Indication range: 0.5 Hz to 500 kHz

Cancelar a medida de frecuencia:
Presione **REC-MEMO**
2.3 Current Measurement

DANGER
- Never apply voltage to the test leads when a current measurement function is selected. Doing so may damage the product and result in personal injury.
- To avoid electrical accidents, remove power from the circuit before connecting the test leads.

WARNING
- To avoid electrical shock, do not use the product to measure current in circuits of 600 V or greater. The current function overload protection trips at 600 Vrms.
- Maximum input current in each range:
 - 40μA/μA/mA range: 420mADC/ 420 mA rms
 - 10A range: 10 ADC/ 10 A rms
 Do not input a current in excess of this value. Otherwise, the measurement product will be damaged, resulting in an accident that may cause injury or death.

Selecting the manual range: Press **RANGE**
(“AUTO” is turned off)
Reselecting the auto range: Press **RANGE** (for at least 1 second) (“AUTO” lights up)

Holding the measured value:
- Press **H.AUTO/REL** → Measurement → Intermittent sound → Move the test leads away from the measurement object.
- Press **H.AUTO/REL** + Power-on → Measurement → Press **H.AUTO/REL**

Appearance of O.F: The measured value exceeds 1050 counts (10-A range) or 4200 counts (other ranges).
2.3 Current Measurement

40μA Measurement (42μA range)

1. Move the function selector to the 40μA position.
2. Select DC (−−) or AC (～) using the REC-MEMO button.
3. Connect the red test lead to terminal μA.mA, and the black test lead to terminal COM.
4. Connect the test leads to the measurement object, and read the indicated value. The Auto Range function is not provided.

μA Measurement (420 μA/4200 μA range)

1. Move the function selector to the μA position.
2. Select DC (−−) or AC (～) using the REC-MEMO button.
3. Connect the red test lead to terminal μA.mA, and the black test lead to terminal COM.
4. Connect the test leads to the measurement object, and read the indicated value.
2.3 Current Measurement

mA Measurement (40 mA/400 mA)

1. Move the function selector to the mA position.
2. Select DC (---) or AC (―) using the REC-MEMO button.
3. Connect the red test lead to terminal μA.mA, and the black test lead to terminal COM.
4. Connect the test leads to the measurement object, and read the indicated value.

A Measurement (10 A range)

⚠️ CAUTION

Note that the product may be damaged if current exceeding the selected measurement range is applied for a long time (for the 10 A range, continuous current must be limited to 7A, or to less than one minute if over 7A)

1. Move the function selector to the 10A position.
2. Select DC (---) or AC (―) using the REC-MEMO button.
3. Connect the red test lead to terminal A, and the black test lead to terminal COM.
4. Connect the test leads to the measurement object, and read the indicated value.

The Auto Range function is not provided.
2.4 Resistance Measurement

DANGER

- Never apply voltage to test leads when the Resistance function is selected. Doing so may damage the product and result in personal injury.
- To avoid electrical accidents, remove power from the circuit before measuring.

1. Move the function selector to the **Ω** position.

2. Connect the red test lead to terminal **V.Ω**, and the black test lead to terminal **COM**.

3. Connect the test leads to the measurement object, and read the indicated value.

Selecting the manual range: **RANGE**

Reselecting the auto range: **RANGE** (Press for at least 1 second) ("AUTO" lights up)

Holding the measured value: **HOLD AUTO** Function, page 25) or **HOLD** Function, page 26)

Move the test leads away from the measurement object.

H.AUTO/REL → Measurement → Intermittent sound → **H.AUTO/REL**
2.5 Continuity Check

⚠️ DANGER

- Never apply voltage to test leads when the Continuity function is selected. Doing so may damage the product and result in personal injury.
- To avoid electrical accidents, remove power from the circuit before measuring.

1. Move the function selector to the position.

2. Select Diode () using the REC-MEMO button (lights up).

3. Connect the red test lead to terminal \(V.\Omega \), and the black test lead to terminal COM.

4. Connect the test leads to the measurement object.

When the continuity (threshold: \(50\pm30 \\Omega \) or less) is established, the beeping sounds and the resistance is displayed (fixed to the \(420-\Omega \) range).
2.6 Diode Check

- Never apply voltage to test leads when the Diode Check function is selected. Doing so may damage the product and result in personal injury.
- To avoid electrical accidents, remove power from the circuit before measuring.

1. Move the function selector to the position.
2. Select Diode () using the button (lights up).
3. Connect the red test lead to terminal V.Ω, and the black test lead to terminal COM.
4. Connect the test leads to the measurement object.

The display shows forward voltage (0.4 V to 0.7 V) for a normal diode.

Appearance of O.F: The diode is invertedly connected or broken.
Appearance at approximately 0 V: The diode is short-circuited.
3.1 HOLD AUTO Function

Functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sim V/\Omega$</td>
<td>Simply moving the test leads away from the measurement object holds the measured value. This function is useful when it is difficult to read the displayed value in the current location or both hands are being used to conduct the measurement.</td>
</tr>
<tr>
<td>$40\mu A/\mu A/mA/10A$</td>
<td></td>
</tr>
</tbody>
</table>

Steps

1. Select the desired function and connect the measurement product.

 - Press the **H.AUTO/REL** button. ("HOLD" blinks) (In the measurement of resistance played.)

2. Connect the test leads to the measurement product. The measured value is stabilized, an intermittent beep sound is generated. ("HOLD" lights up)

3. When the intermittent sound is heard, move the test leads away from the measurement object. The measured value immediately before the test leads removed is held. ("HOLD" blinks)

Blind zone

- V/Ω: 420 mV range, less than 400 counts (other range)
- $\sim A/\sim A$: less than 40 counts
- Ω: O.F

NOTE

- HOLD AUTO is disabled in the AC/DC 420-mV range.

- **Canceling the hold mode:** Press **H.AUTO/REL** again. (HOLD is turned off)

- **Saving the data:** Press **REC-MEMO**
3.2 HOLD Function

Functions

\(\sim V/\sim V/Hz/\Omega \) / / \(\mu A/\mu A/mA/10A \)

Description

This function holds the currently measured value.

1. Turn on the power while pressing the H.AUTO/REL button, and hold the button down until a beeping sound is generated (toggle the function selector to the desired position).

2. Press the H.AUTO/REL button again at the measured value to be held. The value is held. ("HOLD" lights up)

3. To cancel the hold mode, press the H.AUTO/REL button again.

NOTE The Hold function is active until the measurement product is turned off.
3.3 Overflow Warning Function

<table>
<thead>
<tr>
<th>Functions</th>
<th>~V/40μA/μA/mA/10A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>When the measured value exceeds the maximum indication (4200 counts), O.F is displayed and an intermittent sound is generated.</td>
</tr>
</tbody>
</table>

When the measured value exceeds 1050 counts in the ranges specified below, O.F is displayed and an intermittent sound is generated.

- Maximum range (1000-V range) of DC voltage measurement (~V) or AC voltage measurement (~V)
- 10-A range of current measurement

Example: When the measured value exceeds 1050 counts in the 1000-V range of AC voltage measurement (~V)
3.4 Relative Display Function

<table>
<thead>
<tr>
<th>Functions</th>
<th>(\sim V \approx V/\Omega/40\mu A/\mu A/m A/10 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Once an arbitrary value is specified as a reference, the relative value against the reference is displayed. This function is useful to check any discrepancy from the reference.</td>
</tr>
</tbody>
</table>

Checking any discrepancy from the reference (when 10 V is defined as the reference in the voltage measurement)

1. Move the function selector to the desired position and connect the test leads to the measurement product. (example: \(\sim V \))
2. Connect the test leads to the measurement object.
3. Press the \textbf{H.AUTO/REL} button for at least 1 second for the value to be defined as the reference. (Example: Press the button at 10 V. "REL" lights up and "0000" is displayed.)
4. Measure the voltage again and read the displayed value (discrepancy from the reference).
 (The measured value minus the reference is displayed.)

\begin{center}
\begin{tabular}{|c|}
\hline
Measure a voltage of 10 V \\
\hline
\end{tabular}
\end{center}

Any discrepancy from the reference (10 V) is displayed. In the case of a negative value, "-" is also displayed.

\textbf{NOTE} The measurement range is fixed to the range that is active when the \textbf{H.AUTO/REL} button is pressed. If the reference value deviates from the full scale, O.F is displayed. While O.F is displayed, the Relative function is disabled.
3.4 Relative Display Function

Application: Using the Relative Display function for the purpose of zero adjustment in the measurement of low resistances

1. Move the function selector to the Ω position and connect the test leads to the equipment.

2. Short-circuit the test leads. The resistance of the test leads is displayed.

3. Press the H.AUTO/REL button for at least 1 second. ("REL" lights up, "0000")

4. Connect the test leads to the measurement object, and read the indicated value.

Canceling the Relative function:

Press H.AUTO/REL
3.5 Auto Power Save Function

Functions
All functions

Description
Approximately 10 minutes after completing final operation, the measurement product automatically enters Power Save mode. When the measurement product is turned on, it automatically enters Auto Power Save mode (“APS” lights up).

NOTE
- In Power Save mode, the LCD is blank but power is supplied to the measurement product.
- To avoid battery depletion, turn the function selector OFF after use (the Auto Power Save feature consumes a small amount of current).

Recovery from Power Save mode:
Turn off the function selector. In the current measurement, disconnect the test leads from the terminals and turn off the function selector.

NOTE
After the measurement product exits Power Save mode, all conditions are reset. If the measurement product is to be used for an extended period, Auto Power Save mode should be canceled in advance.

Canceling the Auto Power Save function:
Turn on the measurement product while pressing the REC•MEMO button. (Hold down the button until the beeping sound is generated.)

The Auto Power Save function is disabled until the measurement product is turned off (APS is turned off).
3.6 Voltage Detecting Function

This function should be used for the covered power line. Depending on the measurement status, the power may not be detected. Before using this function, check that the measuring device can detect the existing live power line.

<table>
<thead>
<tr>
<th>Functions</th>
<th>~V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>This function allows you to check whether the power line is live. If the line is live, the measurement product indicates that fact both audibly (intermittent sound) and visually (display).</td>
</tr>
</tbody>
</table>

1. Move the function selector to the ~V position, and press the REC-MEMO button twice (“1” lights up).
2. Bring the measurement product close to the power line.
3. If necessary, change the detection range with the RANGE button.

Guidelines for detecting power line level
1-3: Approx. 100 V
4: Approx. 200 V

When the line is live, the bar graph fluctuates.
When the voltage is outside of the detection range, an intermittent sound is generated and the display blinks.

The voltage detecting sensor is mounted at the top of the measurement product. Bring the top close to the power line, as shown at left.
3.7 Dynamic Recording Function

Functions

This function allows the maximum (MAX), minimum (MIN), average (AVG), and currently measured values to be displayed selectively. It is useful for measuring any discrepancy over an extended period.

Description

- **Appearance of O.F:** The measurement range exceeds the specified level.
- **Before using the Recording function,** use the manual range to set the range assumed as the maximum level.
- **Canceling:** Press **REC-MEMO** again.

1. Select the desired function and connect the test leads to the measurement product.

2. Connect the test leads to the measurement object.

3. Press the **REC-MEMO** button for at least 1 second. (*"MAX MIN AVG" lights up*)

4. Select the item using the **H.AUTO/REL** button.

- The maximum, minimum, and average measured after the activation of the Recording function are automatically recorded (recording interval: approx. 0.4 seconds).
- When the maximum and/or minimum is updated, a beeping sound is generated.
- The simple average is displayed within 30 min from the start of measurement and the moving average is displayed after the elapse of 30 min.
- While the Recording function is in operation, the Auto Power Save function is disabled (APS is turned off). The range is fixed.

Current value

- Maximum value: ~100.4 V
- Minimum value: ~69.5 V
- Average value: ~106.2 V

REMEMO Press for at least 1 second.
3.8 Memory Function

Saving data to memory

<table>
<thead>
<tr>
<th>Functions</th>
<th>$V/\Omega/40\mu A/\mu A/mA/10A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>This function memorizes the measured value held using the Hold Auto or Hold function.</td>
</tr>
</tbody>
</table>

1. Hold the measured value using the Hold Auto or Hold function.

2. Press the **REC-MEMO** button in hold mode. The value displayed is saved in memory of the number specified.

Wait a moment for current value display on the LCD. Up to 20 values can be saved.

Memory numbers cannot be specified. The data is saved to the memory in order, starting from 01. When the memory number reaches 20, the subsequent data sets are overwritten to memory starting from number 01.
3.8 Memory Function

Calling data from memory

Call data from memory as specified below.

1. Turn on the power while pressing the RANGE button. Move the function selector to the \(V \) position (hold the button down until a beeping sound is generated).

2. Press the RANGE button to select the memory number. The saved data is displayed on the LCD.

Deleting all data from memory

Delete all data from memory as specified below.

In Memory Call mode, press the REC-MEMO and RANGE buttons simultaneously for at least 1 second. All data is deleted from memory.

Data in the memory of the specified number cannot be deleted.

Returning to the normal measurement mode: Toggle the function selector. (Five minutes after completing final operation, the measurement product returns to the normal measurement mode.)
4.1 General Specifications

<table>
<thead>
<tr>
<th>Measurement Method</th>
<th>Dual integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Measurement System</td>
<td>Average rectifying measurement</td>
</tr>
<tr>
<td>Function</td>
<td>DC voltage (V), AC voltage (V), Resistance (Ω), DC current (A), AC current (A), Continuity check (), Diode check (), Frequency (Hz), Voltage detecting</td>
</tr>
<tr>
<td>Additional Function</td>
<td>Auto Range function, Manual Range function, Hold function, Hold Auto function, Relative Display Function, Dynamic Recording function, Memory function (Registration, call, deletion), Auto Power Save function, Overflow Warning function, Battery-Life Warning function</td>
</tr>
<tr>
<td>Display Type</td>
<td>TN type LCD, 1/4 duty, dynamic drive</td>
</tr>
<tr>
<td>Display Elements</td>
<td>3(1/2) dgt. Max. 4200 counts (19,999 counts for Hz function) Number display: "20" Polarity indicator: "−" sign (automatic) Overflow indicator: "OF" or "–OF"</td>
</tr>
<tr>
<td>Units and Symbols</td>
<td>AUTO/REL/HOLD/MAX/MIN/AVG/ / / APS M/k/m/Hz/Ω/A/V/ / / MEM</td>
</tr>
<tr>
<td>Bar-graph Indicator</td>
<td>Indication of scale, 42-dot bar graph, and ± (polarity)</td>
</tr>
</tbody>
</table>
4.1 General Specifications

| Input Terminals | V, Ω terminal (V, Hz, Ω, continuity, diode) μA, mA, A/ COM terminals
	Equipped with terminal shutter to prevent improper operation.
Function Selector	Rotary selector
Range Switching	Auto/Manual Range
Sampling Rate	2.5 S/s (except Frequency), 5 S/s (Frequency), 25 S/s (Update of bar graph)
Power Supply	Two manganese (R03) batteries or two alkaline (LR03) batteries
	Rated supply voltage: 1.5VDC x 2
Battery-Life	B indicates low battery
Warning	(2.2 V±0.1V or less)
Continuous	Approx. 100 hours
Operating Time	(≈ V, with R03 manganese batteries) Approx. 200 hours
	(≈ V, with LR03 alkaline batteries)
Maximum Rated	1000VDC/ 1000Vrms(sin), or 10^7V•Hz(CATII)
Voltage to Earth	600VDC/ 600Vrms(sin), or 10^7V•Hz(CATIII)
Maximum Input	\tilde{V}/≈ V/Ω/Hz
Voltage	1000VDC/ 1000Vrms(sin), or 10^7V•Hz(CATII)
	600VDC/ 600Vrms(sin), or 10^7V•Hz(CATIII)
Maximum Input	\tilde{A}/≈ A
Current	42μA - 420mA range: 420 mA DC/AC (fuse 0.5A/700V DC/AC)
	10A range: 10 A DC/AC (fuse 10A/600V DC/AC)
Dielectric	Input terminals to case:
Strength	7.4 kVrms sin (50/60 Hz for one minute)
Noise Suppression	NMRR: ≈ V -60dB or better (50/60 Hz)
	CMRR: \tilde{V} -100dB or better (50/60 Hz)
	\tilde{V} -60dB or better (50/60 Hz)
Maximum Rated	20 mVA (supply voltage 3.0 V)
Power	0.1 mVA (Auto Power Saving, supply voltage 3.0 V)
4.1 General Specifications

<table>
<thead>
<tr>
<th>Operating Environment</th>
<th>Indoors, altitude up to 2000 m (6562-ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature & Humidity</td>
<td>0 to 50°C (32 to 122°F), at 80%RH or less (non-condensating)</td>
</tr>
<tr>
<td>Storage Temperature & Humidity</td>
<td>-20 to 60°C (-4 to 140°F), at 70%RH or less (non-condensating)</td>
</tr>
<tr>
<td>Temperature Characteristic</td>
<td>(Measurement accuracy) × 0.1°C (except 23±5°C)</td>
</tr>
<tr>
<td>Size & Weight</td>
<td>Approx. 76W × 167H × 33D mm (2.99"W × 6.57"H × 1.30"D) (without protrusions) Approx. 260 g (9.2 oz)</td>
</tr>
<tr>
<td>Accessories</td>
<td>9207-10 TEST LEAD Instruction Manual Two R03 manganese batteries Protective holster (3256-51) or 9378 CARRYING CASE (3256-50)</td>
</tr>
<tr>
<td>Options</td>
<td>9207-10 TEST LEAD 9014 HIGH VOLTAGE PROBE* (30 kVDC) (*no CE marking) 3853 CARRYING CASE (for 3256-51 can be packaged together with the holster.) 9378 CARRYING CASE (Standard item for the 3256-50)</td>
</tr>
<tr>
<td>Protective Fuse</td>
<td>Terminal: TDC600-10A (made by Cooper Bussmann*)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>10A</td>
<td>Rating 10 A/600 VAC Fast-Acting</td>
</tr>
<tr>
<td></td>
<td>Breaking capacity: 10 kA/250 VAC,</td>
</tr>
<tr>
<td></td>
<td>200 A/600 VAC</td>
</tr>
<tr>
<td>μAmA terminal:</td>
<td>Rating 0.5 A/700 VAC Fast-Acting</td>
</tr>
<tr>
<td>70125</td>
<td>Breaking capacity: 50 kA</td>
</tr>
</tbody>
</table>

*Cooper Industries Inc., Bussmann Division, USA
4.2 Accuracy

Accuracy guarantee for temperature and humidity

| Guaranteed accuracy period | 1 year |

Regulated power supply range

3.4 V or lower (until the mark lights up)

(rdg.: displayed value, dgt.: resolution)

Voltage Measurement

<table>
<thead>
<tr>
<th>Range [V]</th>
<th>Accuracy ±(rdg.)±(dgt.)</th>
<th>Input Impedance (Frequency range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>420.0 m</td>
<td>±0.5%±2</td>
<td>100 MΩ or more</td>
</tr>
<tr>
<td>4.200</td>
<td>±0.5%±2</td>
<td>Approx. 11MΩ</td>
</tr>
<tr>
<td>42.00</td>
<td>±0.5%±2</td>
<td>Approx. 10MΩ</td>
</tr>
<tr>
<td>420.0</td>
<td>±0.5%±2</td>
<td>Approx. 10MΩ</td>
</tr>
<tr>
<td>1000</td>
<td>±0.5%±2</td>
<td>Approx. 10MΩ</td>
</tr>
</tbody>
</table>

~V	420.0 m	±1.5%±3*2	100 MΩ or more (50 to 100 Hz)
	4.200	±1.2%±3	Approx. 11 MΩ (50 to 500 Hz)
	42.00	±1.2%±3	Approx. 10 MΩ (50 to 500 Hz)
	420.0	±1.2%±3	Approx. 10 MΩ (50 to 500 Hz)
	1000	±1.2%±6	Approx. 10 MΩ (50 to 500 Hz)

Overload protection (for one minute):
1000 VDC, 1000 Vrms(sin)(CAT II), 600 VDC, 600 Vrms(sin)(CAT III), or 10^7 V·Hz

*1: For the input of less than 10% of the full scale, ±2 dgt. is added to the above measurement accuracies.

*2: The above measurement accuracy for the 420.0 mV range is not defined for inputs of less than 1.0 mV.
4.2 Accuracy

(rdg.: displayed value, dgt.: resolution)

Frequency Measurement

<table>
<thead>
<tr>
<th>Hz</th>
<th>Range [Hz]</th>
<th>Accuracy ±(rdg.)±(dgt.)</th>
<th>Input level (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1</td>
<td>199.99</td>
<td>±0.02%±2</td>
<td>1: 0.8 to 4 V</td>
</tr>
<tr>
<td></td>
<td>1999.9</td>
<td>±0.02%±1</td>
<td>2: 4 to 40 V</td>
</tr>
<tr>
<td></td>
<td>19.999k</td>
<td>±0.02%±1</td>
<td>3: 40 to 400 V</td>
</tr>
<tr>
<td></td>
<td>199.99k</td>
<td>±0.02%±1</td>
<td>4: 400 to 1000 V</td>
</tr>
<tr>
<td></td>
<td>500.0k</td>
<td>±0.02%±1</td>
<td></td>
</tr>
</tbody>
</table>

Overload protection (for one minute):
1000 VDC, 1000 Vrms(sin)(CAT II),
600 VDC, 600 Vrms(sin)(CAT III), or 10^7V Hz

*1: Frequencies of less than 0.50 Hz cannot be measured.
Maximum input voltage: 1000 Vrms(sin) or 10^7V Hz

Resistance Measurement/ Continuity Check/ Diode Check

<table>
<thead>
<tr>
<th>Ω (Resistance)</th>
<th>Range</th>
<th>Accuracy ±(rdg.)±(dgt.)</th>
<th>Openterminal voltage</th>
<th>Measurement current (max.) (Reference value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>420.0Ω</td>
<td>±0.7%±4</td>
<td>3.4 V or less</td>
<td>700μA</td>
</tr>
<tr>
<td></td>
<td>4.200kΩ</td>
<td>±0.7%±2</td>
<td></td>
<td>250μA</td>
</tr>
<tr>
<td></td>
<td>42.00kΩ</td>
<td>±0.7%±2</td>
<td></td>
<td>50μA</td>
</tr>
<tr>
<td></td>
<td>420.0kΩ</td>
<td>±1.5%±2</td>
<td></td>
<td>5μA</td>
</tr>
<tr>
<td></td>
<td>4.200MΩ</td>
<td>±2.5%±2</td>
<td></td>
<td>0.5μA</td>
</tr>
<tr>
<td></td>
<td>42.00MΩ</td>
<td></td>
<td></td>
<td>0.05μA</td>
</tr>
</tbody>
</table>

| (Continuity) | 420.0Ω| ±0.7%±4 | 3.4 V or less | Threshold: 50Ω±30Ω |

| (Diode) | 2.00V*1| ±5.0%±2 | 3.4 V or less | 700μA |

Overload protection (for one minute):
1000 VDC, 1000 Vrms(sin)(CAT II),
600 VDC, 600 Vrms(sin)(CAT III), or 10^7V Hz

*1: The measurement range varies depending on the battery voltage level (2.10 V to 2.90 V)
*2: A beeping sound is generated when the continuity is established.
4.2 Accuracy

(rdg.: displayed value, dgt.: resolution)

Current Measurement

<table>
<thead>
<tr>
<th>Range [A]</th>
<th>Accuracy ±(rdg.)±(dgt.)</th>
<th>Input Impedance (Shunt resistance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--- A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.00μA</td>
<td>±1.5%±4</td>
<td>Approx. 10kΩ</td>
</tr>
<tr>
<td>420.0μA</td>
<td>±1.5%±4</td>
<td>Approx. 100Ω</td>
</tr>
<tr>
<td>4200μA</td>
<td>±1.5%±4</td>
<td>Approx. 100Ω</td>
</tr>
<tr>
<td>42.00mA</td>
<td>±1.5%±4</td>
<td>Approx. 1Ω</td>
</tr>
<tr>
<td>420.0mA</td>
<td>±1.5%±4</td>
<td>Approx. 1Ω</td>
</tr>
<tr>
<td>10.00*2</td>
<td>±1.5%±4</td>
<td>Approx. 0.01Ω</td>
</tr>
<tr>
<td>~ A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.00μA</td>
<td>±2.5%±5</td>
<td>Approx. 10kΩ</td>
</tr>
<tr>
<td>420.0μA</td>
<td>±2.5%±5</td>
<td>Approx. 100Ω</td>
</tr>
<tr>
<td>4200μA</td>
<td>±2.5%±5</td>
<td>Approx. 100Ω</td>
</tr>
<tr>
<td>42.00mA</td>
<td>±2.5%±5</td>
<td>Approx. 1Ω</td>
</tr>
<tr>
<td>420.0mA</td>
<td>±2.5%±5</td>
<td>Approx. 1Ω</td>
</tr>
<tr>
<td>10.00*2</td>
<td>±2.5%±5</td>
<td>Approx. 0.01Ω</td>
</tr>
</tbody>
</table>

Protective Fuse
- 42μA to 420mA range: 0.5 A 700 VAC,
 Breaking capacity 50 kA
- 10A range: 10A 600VAC, Breaking capacity 10 kA/250 VAC, 200 A/600 VAC

*1: For the input of less than 10% of the full scale, ±2 dgt is added to the above measurement accuracies.

*2: For the 10-A range, the measurement time is infinite at or below 7 A and within 1 minute for 7 A to 10 A.
4.2 Accuracy
5.1 Replacing the Batteries and Fuses

DANGER

- To avoid electric shock when replacing the batteries and fuses, first disconnect the test leads from the object to be measured.
- Before using the product after replacing the batteries or fuses, replace the cover and screw.
- Do not mix old and new batteries, or different types of batteries. Also, be careful to observe battery polarity during installation. Otherwise, poor performance or damage from battery leakage could result.
- To avoid the possibility of explosion, do not short circuit, disassemble or incinerate batteries.
- Handle and dispose of batteries in accordance with local regulations.
- Replace the fuse only with one of the specified characteristics and voltage and current ratings. Using a non-specified fuse or shorting the fuse holder may cause a life-threatening hazard.
5.1 Replacing the Batteries and Fuses

A fuse is mounted to the \(\mu A.mA \) and \(A \) terminals in order to protect the circuit. If the current cannot be measured, the fuse may have blown due to overcurrent. Replace the fuse or battery in accordance with the procedure specified below.

Necessary tool: Phillips screwdriver

1. Disconnect the test leads from the measurement circuit, and make sure the function selector is in the OFF position.

2. Position the measurement product with the rear case (bottom face) pointing upward, and use the Phillips screwdriver to remove the three lock bolts.

3. Lift and remove the rear case.

4. Replace the two manganese batteries (R03) mounted to the rear case, or the fuse mounted to the front case.

5. Mount the rear case and tighten the three lock bolts.

Fuse type
- **10A terminal:**
 - TDC600-10A (made by Cooper Bussmann*), Fast-Acting, Rating 10A/600VAC, Breaking capacity 10 kA/250 VAC, 200 A/600 VAC

- **\(\mu A.mA \) terminal:**
 - 70125 (made by SIBA Inc.), Fast-Acting, Rating 0.5 A/700 VAC, Breaking capacity 50 kA

*Cooper Industries Inc., Bussmann Division, USA

NOTE
Different fuses are mounted to the \(\mu A \), mA and A terminals. When replacing a fuse, make sure you are accessing the correct terminal.
5.2 Cleaning

To clean the product, wipe it gently with a soft cloth moistened with water or mild detergent. Never use solvents such as benzene, alcohol, acetone, ether, ketones, thinners or gasoline, as they can deform and discolor the case.

5.3 Service

- If the product seems to be malfunctioning, confirm that the batteries are not discharged, and that the test leads and fuse are not open circuited before contacting your dealer or Hioki representative.
- To avoid corrosion from battery leakage, remove the batteries from the product if it is to be stored for a long time.
5.3 Service
DECLARATION OF CONFORMITY

Manufacturer's Name: HIOKI E.E. CORPORATION
Manufacturer's Address: 81 Koizumi, Ueda, Nagano 386-1192, Japan
Product Name: DIGITAL HiTESTER
Model Number: 3256-50
Accessory: 9207-10 TEST LEAD

The above mentioned products conform to the following product specifications:

Safety: EN61010-1:2001

EN61010-031:2002

Class B equipment
Portable test, measuring and monitoring equipment used in low-voltage distribution systems

Supplementary Information:
The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC.

HIOKI E.E. CORPORATION

15 September 2006

Tatsuyoshi Yoshiike
President

3256C999-04
INSPECTION CERTIFICATE

HIOKI E.E. CORPORATION hereby certifies that the under-mentioned product(s) has been tested and inspected in accordance with applicable HIOKI calibration procedures, and proven to meet or exceed published measurement specifications. We also certify that the measurement standards and instruments used in the calibration procedure are traceable to the national standards organization.

Model: 3256–50

S/N: ______________________

INSPECTOR

T. Kito
HIOKI 3256-50/51 DIGITAL HiTESTER
Instruction Manual

Publication date: September 2006 Revised edition 4
Edited and published by HIOKI E.E. CORPORATION
Technical Support Section
All inquiries to International Sales and Marketing Department
81 Koizumi, Ueda, Nagano, 386-1192, Japan
E-mail: os-com@hioki.co.jp
URL http://www.hioki.co.jp/

Printed in Japan 3256C981-04

- All reasonable care has been taken in the production of this manual, but if you find any points which are unclear or in error, please contact your supplier or the International Sales and Marketing Department at HIOKI headquarters.
- In the interests of product development, the contents of this manual are subject to revision without prior notice.
- Unauthorized reproduction or copying of this manual is prohibited.